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a b s t r a c t

With the explosive growth of the use of imagery, visual recognition plays an important role in many
applications and attracts increasing research attention. Given several related tasks, single-task learning
learns each task separately and ignores the relationships among these tasks. Different from single-task
learning, multi-task learning can explore more information to learn all tasks jointly by using relation-
ships among these tasks. In this paper, we propose a novel multi-task learning model based on the
proximal support vector machine. The proximal support vector machine uses the large-margin idea as
does the standard support vector machines but with looser constraints and much lower computational
cost. Our multi-task proximal support vector machine inherits the merits of the proximal support vector
machine and achieves better performance compared with other popular multi-task learning models.
Experiments are conducted on several multi-task learning datasets, including two classification datasets
and one regression dataset. All results demonstrate the effectiveness and efficiency of our proposed
multi-task proximal support vector machine.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Given the explosive growth the use of imagery in the era of big
data, visual recognition has become an important problem. Var-
ious image classification and recognition methods have been
proposed and have achieved much success [1–9]. Some feature
learning methods are also proposed to improve the performance
of image classification and recognition [10–13]. When learning a
visual recognition task, it can often be viewed as a combination of
multiple correlated subtasks [14]. Considering multi-label image
classification, for example, one particular image may contain
multiple objects corresponding to different labels. Obviously, there
are correlations among these labels. Traditional single-task learn-
ing methods, for example, SVMs and Bayesian models, learn to
classify these labels separately and ignore correlations among
them. It would be desirable to explore shared information across

different subtasks and apply the information to learn all the
subtasks jointly. Inspired by this idea, various methods are
proposed to learn multiple tasks jointly rather than separately.
This is often called the multi-task learning (MTL) [15], learning to
learn [16] or inductive bias learning [17]. All these methods tend to
learn multiple tasks together and improve the performance of
single-task learning models.

The most important and difficult problem in multi-task learn-
ing is to discover the shared information among tasks and
maintain the independence of each task. Considering the classifi-
cation of vehicles (see Fig. 1), we have various types of vehicles,
such as sports cars, family cars and buses corresponding to
different classification tasks. These cars have shared features as
well as unique characteristics. For example, all cars have four
wheels and two headlights. However, sports cars usually have a
lower and racing body, family cars often have medium size, and
buses have a bigger body. Single-task learning only uses the
information of the independent task, while multi-task learning
will use all the information among the tasks. If a multi-task
learning method can find the shared features of these vehicles
and distinguish differences among the vehicles, each learning task
will have much more additional information from other tasks.
Conversely, noise will be added to the current learning task.

Existing multi-task learning methods mainly have two ways to
discover relationships among different tasks. One way is to assume
that different tasks share common parameters [18,14,19–23]
such as a Bayesian model sharing a common prior [14] or a
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large-margin model sharing a mean hyperplane [19]. The other
way to learn the relatedness is to find latent feature representation
among these tasks [24–26], for example, learning a sparse repre-
sentation shared across tasks [25]. Existing multi-task learning
methods mainly have two defects. First, some multi-task learning
models have a complicated theoretical foundation, which leads to
implementation difficulties. For example, a nonparametric Baye-
sian model usually has many assumptions and many parameters to
select. Second, the efficiency is low, especially when the dataset
has a large number of data points and a high dimensional feature.
Our goal is to find an easily implemented multi-task learning
method with high efficiency and comparable performance. In this
paper, we propose a multi-task learning method based on the
proximal support vector machine (PSVM) [27] and apply it to two
classification datasets and one regression dataset. PSVM was
proposed by Fung and Mangasarian and is different from the
standard SVM [28]. PSVM also utilizes the large margin idea by
assigning the data points to the closest of two disjoint hyper-
planes, which are separated as far as possible. However, PSVM has
looser constraints than does standard SVM, with comparable
performance and much lower computational cost. Inspired by
the idea of PSVM and the advantages of multi-task learning, we
derive a multi-task proximal support vector machine (MTPSVM).
All data examples of all tasks are needed to learn MTPSVM
simultaneously. It will absolutely slow the computing process if
the dataset is a large-scale one. In this paper, we develop a method
to optimize the procedure of learning MTPSVM that greatly
improves efficiency. Based on the idea of PSVM for unbalanced
data, we also apply this to MTPSVM. Finally, we propose proximal
support vector regression for regression problems, which is not
discussed in PSVM [27], and extend it to multi-task problems.

MTPSVM has two primary merits compared with other multi-
task learning methods. First, MTPSVM is easily implemented by
just solving a quadratic optimization problem with equality con-
straints. Second, MTPSVM has much lower computational cost and
can be applied to a large-scale dataset. We will demonstrate that
the computational time of MTPSVM relies primarily on the feature
dimension of the data rather than on the number of data points.

We organize the remainder of this paper as follows. Section 2
reviews previous works in multi-task learning. In Section 3, we first
briefly introduce the proximal support vector machine and then
give a specific derivation of the proposed multi-task proximal
support vector machine. The derivation of multi-task proximal
support vector regression will be presented in Section 4. In
Section 5, experiments on several datasets are presented. Section
6 presents our study's conclusions.

2. Related work

Multi-task learning has been proven more effective than single-
task learning by many works via both theory analysis and

extensive experiments. For example, Baxter proposed a novel
model of inductive bias learning to learn multiple tasks together
and derived explicit bounds which demonstrated that multi-task
learning gave better generalization than single-task learning [17].
Another work conducted by Ben-David and Schuller developed a
useful notion of task relatedness and better generalization of error
bounds for learning multiple related tasks based on one special
type of relatedness of tasks [29]. Both studies prove the merits of
multi-task learning in theory. Various experiments also demon-
strate that multi-task learning can achieve better performance
than can single-task learning, e.g., experiments on School Dataset
[19,30,25,31], Landmine Dataset [14,24]. Multi-task learning can
achieve much better performance than single-task learning espe-
cially when the amount of training data is limited.

Due to the effectiveness of multi-task learning, many single-task
learning methods are extended to multi-task learning ones, such as
neural networks, nearest neighbor learners, Bayesian model and
SVM. For example, multi-task learning methods are implemented
by sharing hidden nodes in neural networks or using nearest
neighbor learners [15,32]. Bayesian is another popular model for
multitask learning. It assumes dependencies between various
models and tasks [33,34]. Models can be learned by hierarchical
Bayesian inference with shared parameters treated as hyperpara-
meters at a higher level than the single-task model parameters. In
recent years, nonparametric Bayesian models and infinite latent
subspace learning have become popular in multi-task learning. Rai
and Daume proposed an infinite latent feature model to automa-
tically infer the dimensionality of the task subspace. They learned a
multi-task learning model using the Indian Buffet Process as the
nonparametric Bayesian prior [18]. Consider the success of SVM in
single-task learning, support vector machines are popular in multi-
task learning. Many multi-task learning methods are developed
based on support vector machines with different assumptions or
priors [35,19,30,24]. An infinite latent SVM for multi-task learning is
derived using nonparametric Bayesian models with regularization
on the desired posterior distributions [35]. Evgeniou and Pontil
proposed a novel multi-task learning method based on the mini-
mization of regularization functions, similar to support vector
machines [19]. Based on the work of [19], a more specific and
general derivation of kernel method was developed in [30]. Jebara
proposed a maximum entropy discrimination method for multi-
task learning based on the large-margin support vector machines
[24]. It gives extensions of feature selection and kernel selection for
multi-task learning. The idea of our multi-task learning method is
similar to [19]. The difference is that our multi-task learning
method is based on proximal support vector machine rather than
on the standard support vector machines. This results in an easier
implementation and lower computational cost.

As mentioned above, learning latent common features across
tasks and sharing common parameters are two important ways
to model the relatedness of multi-task learning. For learning latent
common features, a framework was proposed to learn sparse

Fig. 1. An example of single-task learning comparing with multi-task learning.

Y. Li et al. / Pattern Recognition 48 (2015) 3249–32573250



representations shared across multiple tasks [25]. It is based on a
well-known single-task Ll-norm regularization and presents a novel
non-convex regularizer that controls the number of learned features
common across all tasks. A summary of feature selection and kernel
selection was given by Jebara [24]. It combines feature selection and
kernel selection via the support vector machines. Recently, Maksim
et al. proposed a novel multi-task learning method to learn a low-
dimensional representation jointly with corresponding classifiers.
This scalable multi-task representation learning method is suitable
for high-dimensional features [36]. Recent works point out that we
need to consider whether all the tasks are related and share a
common set of features. If not, learning jointly with outlier tasks will
result in worse performance. Jalali et al. introduced an extra
ℓ1=ℓq-norm regularization term individually for feature selection
[37]. Gong et al. applied a similar idea to learn more robust multi-
task feature [38]. Another robust multi-task learning method is
proposed to capture the task relationship using a low-rank structure
and to identify the outlier tasks using group-sparse structure [39]. As
for sharing the common parameters, Theodoros and Massimiliano
applied multi-task learning to the support vector machines and
assumed that related SVM classifiers share a common hyperplane
[19]. The underlying assumption is that models of all tasks are close
to one common model with a small offset. Rai and Daume assumed
that task parameters shared a latent subspace, which was similar to
factor analysis, to measure the relatedness of the tasks. For other
works, [20,21] measured task relatedness through Frobenius norms
of their difference and [14,22,23] learnt the correlation among tasks
through a common prior.

3. Multi-task proximal support vector machine

In this section, we first give an overview of the proximal
support vector machines and then introduce the detailed theore-
tical derivation of our proposed MTPSVM. Additionally, computing
optimization details will be given in section 3.4.

3.1. Linear proximal support vector machine

Consider a classification problem, we have a dataset D including
m data points in an n-dimensional real space Rn. It can be
represented by an m� n matrix A. Each data point, xiARn, has a
binary output yiAf71g (considered as a binary classification
problem), thus D¼ fðx1; y1Þ; ðx2; y2Þ;…; ðxm; ymÞg. We use an m� m
diagonal matrix D with plus one or minus one along its diagonal to
represent label information of the m data points, Dði; iÞ ¼ yi and e is
an m� 1 vector of ones. To solve this problem, standard support
vector machines with a linear kernel is given as the following
quadratic program with penalty parameter υ with respect to ξ

min
ðw;γ;ξÞARðmþ nþ 1Þ

υe0ξþ1
2
w0w

s:t: DðAw�eγÞþξZe
ξZ0 ð1Þ
The nonnegative variable ξ determines the error when the

classes are linearly inseparable. Different from standard SVM,
PSVM solves the following quadratic problem. It replaces the
inequality constraints with an equality one and adds the penalty
of γ

min
ðw;γ;ξÞARðmþ nþ 1Þ

1
2
υξ0ξþ1

2
ðw0wþγ2Þ

s:t: DðAw�eγÞþξ¼ e ð2Þ
Although the modification is very simple, it changes the optimiza-
tion problem significantly. The planes x0w�γ ¼ 71 are not
bounding planes anymore but can be regarded as proximal planes,

around which the points of each class are clustered and which are
pushed as far apart as possible by the term 1

2ðw0wþγÞ [27]. It is
easy to derive an explicit solution for problem (2) while it is
impossible to do so in the standard support vector machines
problem. As a result, PSVM can greatly improve efficiency com-
pared to standard SVMs. More details of proximal support vector
machine can be found in [27].

3.2. Linear multi-task proximal support vector machine

Consider the following setup. We have T tasks and assume that
the data of all the tasks are from the same space X � Y . To keep the
same setting as above, we assume that XARn and YAR for
regression or YAf71g for classification. For task t we have mt

data points

Dt ¼ fðx1t ; y1tÞ; ðx2t ; y2tÞ;…; ðxmtt ; ymttÞg t ¼ 1;2;3;…; T :

Dt is sampled from a distribution Pt , supposing P1;P2;…;PT are
related. For task t, the data are represented by mt � n dimensional
matrix At, and the label is represented by mt �mt diagonal matrix
Dt with plus one or minus one along its diagonal. The goal of
multi-task learning is to learn T different functions using the
correlations among all the tasks, i.e., f tðxitÞ ¼ yit . In this paper, we
will learn T different hyperplanes, i.e., f tðxitÞ ¼ x0itwt�γt .

In this paper, MTPSVM assumes all tasks share a common
parameter to measure the relationship among the tasks as used in
hierarchical Bayesian models [34,40,41] and regularized multi-task
learning [19]. They all assume functions wt share a mean function
w0 with an additional offset ut. The hyperplane for task t can be
formulated as follows:

wt ¼w0þut

where w0 is a shared or mean hyperplane among all the tasks and
ut is an offset of particular task t. With the above setup, we now
give the primal problem of the proposed MTPSVM

min
ðw0 ;ut ;γt ;ξt Þ

1
2
Jw0 J2þ

υ
2

XT
t ¼ 1

ξ0tξtþ
λ
2T

XT
t ¼ 1

ðu0
tutþγ2t Þ

s:t: DtðAtðw0þutÞ�eγtÞþξt ¼ et
for t ¼ 1;2;3;…; T ð3Þ
In the above multi-task problem, υ and λ are positive regular-

ization parameters. Here, we give the same parameter constraint λ
on offset ut from the mean hyperplane w0 and bias γt. υ is used to
constrain the slack variables ξt. Different values of λwill determine
the relationship of T tasks. Larger λ will make the T models more
similar (ut tends to be smaller) while smaller λ results in less
similar ones. When learning a single-task proximal support vector
machine, we need to solve T different problems separately as
shown in problem (2). From problem (3), we can see that T
different problems should be solved as a whole because of the
connection of sharing parameter w0. This is the key which allows
our MTPSVM to learn share information among tasks.

The primal problem with equal constraints for MTPSVM is a
convex problem, so Karush–Kuhn–Tucker (KKT) conditions are
necessary and sufficient conditions for optimization. The Lagran-
gian is the following:

Lðw0;ut ; γt ; ξtÞ ¼
1
2
Jw0 J2þ

υ
2

XT
t ¼ 1

ξ0tξtþ
λ
2T

XT
t ¼ 1

ðu0
tutþγ2t Þ

�
XT
t ¼ 1

α0
tðDtðAtðw0þutÞ�etγtÞþξt�etÞ; ð4Þ

where αt is the Lagrange multiplier associated with the equality
constraint for task t. Giving the gradients of the Lagrangian with
respect to ðw0;ut ; γt ; ξtÞ and setting them to zero, we obtain KKT
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conditions as follows:

w0�
XT
t ¼ 1

A0
tDtαt ¼ 0

λ
T
ut�A0

tDtαt ¼ 0

υξt�αt ¼ 0

λ
T
γtþe0tDtαt ¼ 0

ðDtðAtðw0þutÞ�etγtÞþξt�etÞ ¼ 0 ð5Þ

We then have the following equalities with respect to the
primal problem variables ðw0;ut ; γt ;ξtÞ and the Lagrangian multi-
plier αt

w0 ¼
XT
t ¼ 1

A0
tDtαt

ut ¼
T
λ
A0
tDtαt

ξt ¼
αt

υ

γt ¼ �T
λ
e0tDtαt ð6Þ

Calculating T different Lagrange multipliers αt is the key to the
solution of the problem. Replacing ðw0;ut ; γt ; ξtÞ with above
equalities in the last equality in Eq. (5), we have

Dt At

XT
t ¼ 1

A0
tDtαtþ

T
λ
A0
tDtαt

 !
þT
λ
ete0tDtαt

 !
þαt

υ
�et ¼ 0: ð7Þ

To solve this problem, we need to simplify above equality. Let
A¼ ðA0

1;A
0
2;…;A0

T Þ;D¼ diagðD1;D2;…;DT Þ;α¼ ðα0
1;α

0
2;…;α0

T Þ0. Then
we have

PT
t ¼ 1 A

0
tDtαt ¼ ADα. Eq. (7) can be rewritten as

DtAtADαþ
T
λ
DtðAtA

0
tþete0tÞDtþ

It
υ

� �
αt ¼ et ð8Þ

Let Pt ¼ ðT=λÞDtðAtA
0
tþete0tÞDtþðIt=υÞ, P ¼ diagðP1; P2;…; PT Þ. Sub-

stituting Pt in the above equality and combining the T different
equalities together, we have

α¼ DA0ADþP
� ��1e ð9Þ

Finally, we obtain Lagrange multipliers from the above formulation.
Compared with PSVM, we find that the solution form of the Lagrange
multiplier is very similar to that of MTPSVM. We obtain ðw0;ut ; γt ; ξtÞ
by substituting the solved Lagrange multipliers in equalities (6). The
necessary calculation of the inverse of a large matrix ðDA0ADþPÞ is
time consuming if we calculate it directly. We will discuss the
optimization of calculating the Lagrange multipliers below.

3.3. Linear multi-task proximal support vector machine
for unbalanced classifications

As mentioned in [42], we often encounter the situation where
data points are unbalanced between positive and negative sam-
ples, especially for a binary classification problem. There are
various methods for handling unbalanced data, such as upsam-
pling and downsampling. Inspired by the method in [42], we
propose the balanced MTPSVM (B_MTPSVM) to solve the unba-
lanced sample problem in MTPSVM. The main idea for B_MTPSVM
is to penalize samples with different weights according to the
number of data points in that class. Suppose there are mt1 positive
data points and mt2 negative data points for task t. We define a

diagonal matrix Nt with diagonal elements Ntii as follows:

Ntii ¼

1
mt1

dii ¼ 1

1
mt2

dii ¼ �1

8>>><
>>>:

ð10Þ

where dii is the diagonal element of Dt. With the balancing matrix
Nt, the balanced MTPSVM problem is formulated as the following:

min
ðw0 ;ut ;γt ;ξt Þ

1
2
Jw0 J2þ

υ
2

XT
t ¼ 1

ξ0tNtξtþ
λ
2T

XT
t ¼ 1

ðu0
tutþγ2t Þ

s:t: DtðAtðw0þutÞ�etγtÞþξt ¼ et
for t ¼ 1;2;3;…; T ð11Þ
The balanced MTPSVM problem is very similar to standard

MTPSVM except that it penalizes positive and negative data
points with different weights. Therefore the solution for balanced
MTPSVM is similar to that for MTPSVM. We can derive
the solution by making just a slight change on the solution
of MTPSVM. Replacing Pt ¼ ðT=λÞDtðAtA

0
tþeteTt ÞDtþðIt=υÞ with

Pt ¼ ðT=λÞDtðAtA
0
tþeteTt ÞDtþðNt=υÞ, the Lagrange multiplier is still

α¼ DA0ADþP
� ��1e ð12Þ

3.4. Calculating optimization for Lagrange multiplier

In a real word problem, the number of data points is often very
large, such as large-scale image classification. The calculation of
the inverse of matrix ðDA0ADþPÞ will be time consuming if the
number of data points is very large. In this section, we propose a
method to optimize the calculation of Lagrange multipliers. The
total number of data points of all tasks is

M¼m1þm2þ⋯þmT :

Consider α¼ ðDA0ADþPÞ�1e, we need to calculate the inverse of
anM �M dimensional matrix. If we have tens of thousands of data
points, the computational time required to compute the inverse of
so large a matrix will be considerable. To solve this problem we
can reformulate α as follows: let H¼DA0 and use the Sherman–
Morrison–Woodbury formula for matrix inversion [27,43]

α¼ DA0ADþP
� ��1e

¼ P�1�P�1H IþH0P�1H
� ��1

H0P�1
� �

e: ð13Þ

Given this equality, we only need to compute the inverse of
matrix P and the inverse of matrix ðIþH0P�1HÞ. It is easy to
compute the inverse of matrix ðIþH0P�1HÞ, as it is an n� n
dimensional matrix where n is the dimension of the data space.
(If the dimension of the data is large, dimension reduction may be
a good choice.) As for P, it is still a high dimensional matrix;
however, it is a block diagonal matrix. The inverse of matrix P can
be computed as follows:

P�1 ¼ diagðP�1
1 ; P�1

2 ;…; P�1
T Þ

Pt ¼
T
λ
DtðAtA

0
tþeteTt ÞDtþ

It
υ
: ð14Þ

Next, the problem of computing P�1 converts to computing T
different P�1

t . Therefore, computing P�1
t will be the key problem

P�1
t ¼ T

λ
DtðAtA

0
tþeteTt ÞDtþ

It
υ

� ��1

: ð15Þ

Comparing with PSVM, we find that the above formula is
similar to the one in PSVM [27], except that there is an additional
coefficient T=λ for every Pt. Following the method in PSVM, we can
reuse the Sherman–Morrison–Woodbury formula for matrix
inversion. Let Ft ¼Dt ½At et �, then P�1

t can be expressed as the
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following:

P�1
t ¼ T

λ
FtF

0
tþ

It
υ

� ��1

: ð16Þ

Employing Sherman–Morrison–Woodburry gives the following:

P�1
t ¼ υ I�Ft

λIt
Tυ

þF 0tFt

� ��1

F 0t

 !
: ð17Þ

This formula further reduces the computational time of matrix
inversion as we just need to compute an ðnþ1Þ � ðnþ1Þ dimen-
sional matrix ððλIt=TυÞþF 0tFtÞ. From the above optimization, the
inverse of an M� M matrix is converted to the inverse of an n� n
matrix P and T different ðnþ1Þ � ðnþ1Þ dimensional matrixes
ððλI=TυÞþF 0tFtÞ. This demonstrates that the computational time of
MTPSVM relies mainly on the dimension of the data rather than
the amount of the data and that it can be used for large-scale
datasets.

4. Multi-task proximal support vector regression

Having determined the derivation of the multi-task proximal
support vector machine, it is easy to convert the multi-task
proximal support vector machine to multi-task proximal support
vector regression. The problem of proximal support vector regres-
sion is not discussed in [27]. Therefore, we first show the primal
problem of proximal support vector regression (PSVR) and then
extend it to multi-task proximal support vector regression
(MTPSVR). Suppose Y is an m� 1 vector ðy1; y2;…; ymÞ0; yiA
R; i¼ 1;2;…;m and other settings are the same as used in PSVM

min
ðw;γ;ξÞARðmþnþ1Þ

1
2
υξ0ξþ1

2
ðw0wþγ2Þ

s:t: Y ¼ Aw�eγþξ ð18Þ
We hope to predict the output within ξ error with the above
equation. With the same assumption of MTPSVM, we can extend
PSVR to multi-task proximal support vector regression

min
ðw0 ;ut ;γt ;ξt Þ

1
2
Jw0 J2þ

υ
2

XT
t ¼ 1

ξ0tξtþ
λ
2T

XT
t ¼ 1

ðu0
tutþγ2t Þ

s:t: Yt ¼ Atðw0þutÞ�etγtþξt
for t ¼ 1;2;3;…; T ð19Þ

The Lagrangian is

Lðw0;ut ; γt ; ξtÞ ¼
1
2
Jw0 Jþ

υ
2

XT
t ¼ 1

ξ0tξtþ
λ
2T

XT
t ¼ 1

ðu0
tutþγ2t Þ

�
XT
t ¼ 1

α0
tðAtðw0þutÞ�etγtÞþξt�YtÞ: ð20Þ

Problem (19) is still a convex optimization problem. The KKT
conditions are necessary and sufficient for optimization of the
problem (19). Giving the gradients of the Lagrangian with respect
to ðw0;ut ; γt ;ξtÞ and setting them to zero, we have the KKT
conditions as follows:

w0�
XT
t ¼ 1

A0
tαt ¼ 0

λ
T
ut�A0

tαt ¼ 0

υξt�αt ¼ 0

λ
T
γtþα0

tet ¼ 0

Atðw0þutÞ�etγtÞþξt�Yt ¼ 0 ð21Þ

Next, we have the following equalities:

w0 ¼
XT
t ¼ 1

A0
tαt

ut ¼
T
λ
A0
tαt

ξt ¼
αt

υ

γt ¼ �T
λ
α0
tet ð22Þ

Replacing ðw0;ut ; γt ; ξtÞ with above equalities in the last equal-
ity in Eq. (21), we have

At

XT
t ¼ 1

A0
tαtþ

T
λ
A0
tαt

 !
þT
λ
ete0tαtþ

αt

υ
�Yt ¼ 0: ð23Þ

The method to solve the above problem is similar to the one
solving MTPSVM. Let A¼ ðA0

1;A
0
2;…;A0

T Þ; α¼ ðα0
1;α

0
2;…;α0

T Þ0, then
we have

PT
t ¼ 1 A

0
tαt ¼ Aα

AtAαþ
T
λ

AtA
0
tþete0tþ

λ
Tυ

� �
αt ¼ Yt : ð24Þ

Let Pt ¼ AtA
0
tþete0tþðλ=TυÞ, P ¼ diagðP1; P2;…; PT Þ, Y ¼ Y 0

1;Y
0
2;…;

�
Y 0
T Þ0. Substituting Pt in the above equality and combining the T

different equalities together, we have

α¼ A0AþT
λ
P

� ��1

Y : ð25Þ

To solve the above problem, we still need to compute the inverse
of an M �M matrix, where M is the total amount of training data.
We need to convert the computing of the inverse of a large matrix
to computing smaller ones. As done in MTPSVM, we have the
following equality when using the Sherman–Morrison–Woodbury
formula:

α¼ A0AþT
λ
P

� ��1

Y

¼ λ
T
P�1�λ2

T2P
�1A0 Iþλ

T
AP�1A0

� ��1

AP�1

 !
Y : ð26Þ

In the above equation, the inverse of matrix P can be reformulated
as P�1 ¼ diagðP�1

1 ; P�1
2 ; P�1

3 ;…; P�1
T Þ. Thus the inverse of large

matrix ðA0AþðT=λPÞÞ is converted to the inverse of smaller matrix
ðIþðλ=TÞAP�1A0Þ and Pt, whose size is only related to the dimen-
sion of the data.

5. Experiments

We show empirical results of our proposed multi-task models
on three real world datasets including two classification datasets
and one regression dataset. The regression dataset is the school
dataset, which is developed and used to evaluate the performance
of multi-task learning in many works [31,25,19,30]. We will test
the performance of MTPSVR on this dataset. The two classification
datasets are the landmine dataset [24,14] and a multi-task image
classification dataset using images from Pascal, Caltech, Flickr and
ImageNet. The landmine dataset is very suitable for multi-task
learning because it contains 39 different tasks related to each
other. Multi-task image classification is more complex than the
tasks of the landmine or school datasets. First, multi-task learning
methods should have the ability to distinguish low-level features
of the image content. Second, the features have a high dimension.
Experiments are performed on a desktop with Intel Core i3-2130
CPU and 4G RAM. All experiment results demonstrate the merits
of our MTPSVM.
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5.1. Landmine dataset

In this section, we show experiments on the landmine dataset.
The landmine dataset consists of 29 binary classification tasks
collected from different landmine fields. The number of data
samples varies from 445 to 690 with nine dimensions. Both
single-task PSVM and MTPSVM are evaluated in this dataset.
Additionally, we compare our MTPSVM with three other multi-
task learning methods, including multi-task sparsity via maximum
entropy discrimination (MED) [24], multi-task feature learning
(MTL-FEAT) [25] and group multi-task feature learning (GMTL-
FEAT) [26]. MED and our MTPSVM have something in common, as
they are both based on the support vector machines. GMTL-FEAT
achieves remarkable success with group multi-task learning meth-
ods. MTL-FEAT is a popular framework for multi-task feature
learning and it is the basis of many other multi-task learning
methods. The performance of balanced MTPSVM and balanced
PSVM will be given compared with standard MTPSVM and PSVM
without balancing. All methods use a linear kernel to run the
experiments. Both AUC (area under the curve) and running time are
evaluated by training a varied number of training data exam
ples: 20;40;…;160.

Values υ for PSVM and ðυ; λÞ for MTPSVM are chosen through a
validation set as follows. We validate PSVM by setting υ¼ 2i, where
i¼ �2; �1;0;1;2;…;9. For MTPSVM, we used the same setting
υ¼ 2i and λ¼ 2j, where i¼ �2; �1;0;1;2;…;9 and j¼ �2;
�1;0;1;2;…;9. Values υ and ðυ; λÞ are chosen to give the best
performance on the validation set. Next, we use the chosen para-
meter to train PSVM and MPSVM on the training set and test it on
the test set. The method for choosing parameters for the other three
multi-task learning methods is similar to PSVM and MTPSVM. We
find the best parameters on the validation set according to the
methods used in related papers. We run all the experiments five
times to avoid randomness and report average performance.

We first compare our proposed MTPSVM with PSVM in both
balanced and unbalanced cases. Fig. 2 shows that balanced
methods improve the performance by approximately 1% � 2%
compared with unbalanced methods. This shows that the balanced
methods have better performance than unbalanced methods on
unbalanced datasets. Therefore, the following experiments will
use the balanced methods. From Fig. 2, it is also obvious that the
multi-task learning method outperforms single-task learning on
the landmine dataset. It is interesting to find that when the
amount of training data is small, MTPSVM has a much better
performance than PSVM. As the amount of training data increases,
they have almost the same performance. This is because small
amount of training data provide less information for single-task

learning, while multi-task learning can find the correlation among
different tasks leading to more information. It makes sense that
multi-task learning gains better performance with more informa-
tion about the data set. However, when the amount of training
data increases, the single-task learning model can learn enough
information from its own training data, and the multi-task learn-
ing method learns little new information from other tasks. From
this point of view, multi-task learning and single-task learning will
have comparable performance.

Fig. 3 compares our MTPSVM with three other multi-task
learning methods. It is obvious that our MTPSVM outperforms
the other three multi-task learning methods significantly. In this
figure, we can see that the performance of MTPSVM reaches a high
level when the training number is only 20 and improves consis-
tently as the amount of training data increases from 20 to 160. This
shows that MTPSVM can learn much more information than the
other three multi-task learning methods when the amount of
training data is small. The reason MTL-FEAT and GMTL-FEAT
perform badly maybe that MTL-FEAT and GMTL-FEAT learn a
sparse latent feature. However, the landmine data has a low
dimension. Sparse representations may ignore some information
and not be suitable for such a dataset. Our MTPSVM does not have
such a problem, as we need not learn a sparse shared feature to
measure the relationship among these tasks.

Fig. 4 shows the efficiency of MTPSVM. MTPSVM has compar-
able speed with PSVM on the landmine dataset and is much faster
than the other three multi-task learning methods. For example,
PSVM uses approximately 0.008 s, MTPSVM uses 0.009 s, MTL-
FEAT uses 0.162 s, MED uses 0.789 s and GMTL-FEAT uses 0.278 s
when running the experiments with the number of training

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

20 40 60 80 100 120 140 160

A
ve

ra
ge

 A
U

C

Number of Training Samples for Each Task

PSVM B_PSVM MTPSVM B_MTPSVM
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samples for each task equal to 20. The speed of MTPSVM is about
two orders of magnitude faster than the three other multi-task
learning methods. As the amount of training data increases, the
running time of the other three multi-task methods increases
greatly. However, the running time of MTPSVM increases only
slightly. This also demonstrates that the running time of MTPSVM
is determined by the dimension of the data rather than the
amount of training data, as mentioned in Section 3.

5.2. Multi-task image classification

In this section, we conduct experiments on one multi-task
image classification dataset to demonstrate the effectiveness of
our MTPSVM. The multi-task image classification dataset includes
four sub-datasets: Flickr, Caltech, ImageNet, and Pascal. Each sub-
dataset has 10 classes: “airplane”, “bicycle”, “bus”, “car”, “cat”,
“chair”, “dog”, “horse”, “motorbike”, and “sheep”. The classification
of each sub-dataset is treated as one task related to the other three
tasks. Thus, there are four subtasks for each class, and each subtask
is regarded as a binary classification. Take the “airplane” category
for example, single-task learning methods learn four classifiers
independently for the four sub-datasets using just the images from
that sub-dataset. Multi-task learning methods learn four classifiers
jointly for the four sub-datasets using all the images. For the Flickr
dataset, we searched and downloaded images from the Flickr
website. The number of images in different classes ranges from 56
to 300. We chose images for Caltech from Caltech 101 and Caltech
256 by using all images in the relevant category. As for Pascal, we
chose images from the Pascal 2007 dataset with all the training
and test images related to the 10 different classes. We download
the 10 different categories for the ImageNet dataset from the
ImageNet website. The number of images in each category from
ImageNet ranges from 910 to 1603. We give some example images
of the dataset in Fig. 5. From these examples, we can see that
images from different datasets vary in different aspects. For
example, in the car category, images of cars in the Caltech dataset
are all pictures of sides of cars, while car images in the other three
datasets have more variety.

We randomly select 10 examples from every class as a training
set, and the rest are split into two halves for validation and test. In
other words, we use 400 examples as a training set. As for the
features, we use dense sift and quantize them into 600 visual
words with codebooks computed using bag-of-word models. We
first map the 600 dimensional features into a higher-dimensional
linear space, 1800 dimensions in this paper, using feature map
[44]. Then we apply linear MTPSVM and linear PSVM on these
higher dimensional features instead of using non-linear kernel on
the original 600 dimensional features. This results in higher
efficiency of experiments. We use the standard procedures for
selecting the parameters as mentioned in experiments on land-
mine dataset.

For this real-world image classification task, we also compare
MTPSVM with MTL-FEAT, MED and GMTL-FEAT. Additionally, the
performance of pooling PSVM and pooling LIBSVM is shown.
“Pooling” refers to training just one classifier using all of the data
for each class. We use average precision to evaluate the perfor-
mance of the classifiers. The results are shown in Table 1. It is clear
that MTPSVM outperforms pooling PSVM, pooling LIBSVM and the
other three multi-task learning methods. The reason that the
classification performance of pooling PSVM and pooling LIBSVM
is worse than that of multi-task learning methods is that they do
not consider correlation among tasks and just learn one classifier
for all the tasks. Data from other tasks can be observed as a type of
noise adding to the current task leading to worse performance.
Across the 10 classes, MTPSVM outperforms all the baseline
methods on eight classes. MED performs best on category chair
and pooling PSVM performs best on category dog. The last row of
Table 1 shows the mean average precision of the 10 classes. The
mean average precision of MTPSVM is 48.58%, while GMTL-FEAT
performs the worst. We find that GMTL-FEAT may not be suitable
for high dimension features, which leads to bad performance.
Therefore, in this experiment, we first reduce high-dimension
feature to a low feature space for GMTL-FEAT. Our MTPSVM
consistently outperforms other methods on such a multi-task
image classification dataset.

5.3. School dataset

In this section, we will test our multi-task regression method
on the school dataset, which is from the Inner London Education
Authority. This dataset is publicly available and has been used for
evaluating many multi-task learning methods, for example [31,25].
It consists of examination scores of 15,362 students from 139
secondary schools in 1985, 1986 and 1987. There are 139 different
tasks corresponding to predicting the examination scores in that
school. The input feature includes the year of the examination,
four school-dependent features and three student-dependent

Fig. 5. Example images in Caltech, Pascal, ImageNet and Flickr for multi-task image classification.

Table 1
Performance comparison between MTPSVM and baseline methods on each of the
10 classes as well as the MAPs over all classes.

Category Pooling
PSVM (%)

Pooling
LIBSVM (%)

MED
(%)

MTL-
FEAT (%)

GMTL-
FEAT (%)

MTPSVM
(%)

Airplane 79.01 78.25 79.77 79.58 80.33 80.92
Bicycle 41.69 41.12 42.65 43.03 41.07 44.63
Bus 62.91 60.87 65.07 64.41 60.04 67.37
Car 49.04 52.44 54.08 52.81 48.03 54.31
Cat 36.75 35.75 37.77 37.43 37.29 38.77
Chair 41.75 44.10 47.07 44.74 43.32 46.54
Dog 35.32 31.78 30.14 32.89 30.04 34.32
Horse 30.57 29.32 29.75 31.04 28.58 31.74
Motorbike 42.87 42.50 43.26 43.15 38.96 44.03
Sheep 39.47 38.52 40.33 41.14 41.00 43.14
MAP 45.94 45.46 46.99 47.02 44.87 48.58
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features. The features relevant to school are percentage of students
eligible for free school meals, percentage of students in VR band
one (highest band in a verbal reasoning test), school gender and
school denomination. Four student-dependent features are gen-
der, VR band (taking the value 1, 2 or 3) and ethnic group. To
compare with other methods, we follow the same setup as other
multi-task learning methods do by creating binary variable for
each possible attribute value. Finally, there are 19 student-
dependent features and eight school-dependent features.

We use the same 10 random splits of the dataset as used in
[25]. Seventy-five percent of the examples from each school are as
training data and 25% as test data. The number of examples differs
from school to school and on average the training set includes 80
examples per school and the test set includes 30 examples per
school. To compare with other methods, we use the measure of
percentage of explained variance used in [31], which is defined as
the total variance of the data minus the sum-squared error on the
test set as a percentage of the total variance. We select the
parameter for PSVR and MTPSVR through validation as done in
experiments on landmine dataset.

Table 2 shows the performance comparison between our
method and multi-task feature learning (MTL-FEAT) [25]. MTL-
FEAT is a popular framework to learn shared features and often
compared as a baseline in multi-task learning [26,20]. An “Inde-
pendent” result is achieved by training 139 ridge regressions. The
“Aggregate” result is obtained by training just one ridge regression
on the entire dataset. MTL-FEAT of variable selection is one special
case for variable selection using multi-task feature learning. MTL-
FEAT of linear kernel and Gaussian kernel refers to multi-task
feature learning using linear kernel and Gaussian kernel. From
Table 2, we can see that our MTPSVM outperforms PSVR and other
methods. Additionally, MTPSVM outperforms PSVR approximately
7.5% and MTL-FEAT just improves the performance of single-task
learning (Independent) approximately 3%. This indicates that
MTPSVM has greater potential than MTL-FEAT to improve perfor-
mance for single-task learning.

Table 3 shows the performance and running time of MTPSVM
with various training sizes. We can see the high efficiency of
MTPSVM from the table. The running time just reaches approxi-
mately 0.082 s when using 70% of the 15,362 examples as training
set. The performance can reach a high level of 25.35% using just

20% of the examples as a training set. This is comparable to the
performance of MTL-FEAT(variable selection) when using 75% of
the examples as training set.

6. Conclusion and future work

In this paper, we propose a novel multi-task learning method
based on PSVM. We give a detailed derivation of our MTPSVM and
extend it for unbalanced data (B_MTPSVM). Considering the
efficiency problem, the calculating procedure of MTPSVM is
optimized, which leads to high efficiency. Experiments are con-
ducted on three datasets: the landmine dataset, the school dataset
and one multi-task image classification dataset. We compare both
the performance and the running time of MTPSVM, PSVM and
three other popular multi-task learning methods. All results
demonstrate that MTPSVM has better performance and much
shorter running time. Additionally, MTPSVM performs quite well
especially when the amount of training data is small.

In the future, we will extend our multi-task learning algorithm
to more-general settings. In this paper, we make an assumption
that all tasks share a mean hyperplane to measure the relationship
among all the tasks. Although it is suitable for some cases, data in
real life is more complicated and may not be suitable for such an
assumption. It is difficult to derive the real relationship of the
parameters among all the tasks without sufficient prior informa-
tion. We will try to combine latent feature learning with para-
meter sharing for multi-task learning to handle this problem. Our
main idea is that the original feature space may not be suitable for
such an assumption. However, we can consider learning a shared
latent future subspace that is suitable for our assumption.
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